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Abstract. In this paper, the effects of tunnelling from the p states of the scanning microscope 
tip are considered. In the case of the graphite surface, it is shown that an appreciable tunnel 
current flows to the px and py components of the tip wavefunction and that this tunnel current 
significantly reduces the amplitude of the corrugations that should be measured on this 
surface. The results also show that the giant corrugations observed in scanning tunnelling 
microscope images of graphite cannot be explained by a tunnelling model. 

1. Introduction 

The surface of graphite has been extensively studied with the scanning tunnelling 
microscope (STM). A number of these studies have found that the STM image of this 
surface is characterised by giant corrugations ranging in magnitude from approximately 
1 8, to about 10 8, (Binnig et aZ1985, Elings and Wudl 1987, Colton et aZ1987). Other 
studies have reported corrugation amplitudes that are significantly greater than this 
(Mamin et aZ 1986, Morita et af  1987). It is important to know whether these giant 
corrugations are a genuine tunnelling image of the surface or whether some other 
phenomenon is responsible for the large magnitude of the measured corrugations. A 
theoretical analysis of the STM image of graphite (Tersoff 1986) concluded that the giant 
corrugations could be explained by the electronic structure of the surface. However, 
this analysis took only the tunnelling to the s state of the STM tip into consideration. The 
Fermi surface of graphite is a point at the corner of the surface Brillouin zone and the 
electronic wavefunctions at the Fermi level in graphite are characterised by hexagonal 
arrays of nodes. 

Tunnelling to the s state of the tip is forbidden by symmetry when the centre of the 
probe is positioned over a node of a surface wavefunction, see figure l(a). The maximum 
current to the s state is obtained when the tip is above an antinode in the surface wave 
function as shown in figure l(b). In constant current imaging modes the absence of any 
tunnel current when the STM tip is positioned above a node of the surface wavefunction 
will cause the probe to move a large distance towards the surface at this point. Hence 
Tersoff predicted that there would be giant corrugations in the tunnelling image of the 
graphite surface (Tersoff 1986). However, tunnelling is permitted to the p states of the 
tip when the centre of the probe is positioned over a node of the surface wavefunction, 
see figure l(c). The tunnelling current to the px state of the tip wavefunction will attain 
its maximum value when the tip is positioned above a node in the surface wavefunction, 

0953-8984/90/163811 + 11 $03.50 @ 1990 IOP Publishing Ltd 3811 



3812 D Lawunmi and M C Payne 

Figure 1. A comparison of the tunnelling current to the tips and the tip px states: a schematic 
illustration of the wavefunctions of a surface and a scanning tunnelling microscope tip. (a) 
Tunnelling from the surface to the s wavefunction of the tip is forbidden when the tip is 
positioned over a node of the surface wavefunction. ( b )  The tunnelling current to the tip s 
state reaches its maximum value when the tip is positioned above an antinode in the surface 
wavefunction tip at this point. ( c )  In contrast the tunnelling current to the tip px state reaches 
its maximum value when the tip is positioned above a node in the surface wavefunction. (d )  
Tunnelling to the px wavefunction of the tip is forbidden when the tip is above an antinode 
in the surface wavefunction. 

the tunnelling current to the px state of the STM tip wavefunction will be zero when the 
tip is positioned above an antinode in the surface wavefunction; see figure l ( d ) .  

In constant tunnel current imaging mode the tunnel current to the p states of the tip 
will prevent the STM probe undergoing a large displacement towards the surface when 
the tip is over a node in the surface wavefunction. The calculations presented in this 
paper show that when tunnelling to the p states of the tip is taken into consideration the 
corrugation amplitude expected in STM images of graphite is extremely small in contrast 
to the infinite value predicted by Tersoff. 

An alternative explanation for the presence of giant corrugations in STM images of 
graphite has been developed by Pethica (1986). This model is based on contact between 
the STM tip and the graphite surface. Binnig and Quate (1986), have shown that it is 
possible to produce an ‘STM image’ of graphite by making contact between the tip and 
the surface. Pethica has argued that all that is required to form an STM image in the 
constant current mode is a fluctuation in the conductivity between the tip and the sample 
and has shown that STM images of graphite which exhibit giant corrugations can be 
accounted for by a contact model. It is important to determine whether giant corrugations 
in an STM image of the graphite surface could be produced purely by tunnelling. If giant 
corrugations cannot be explained by tunnelling it must be concluded that when STM 
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images of graphite are characterised by giant corrugations the STM tip has made contact 
with the surface. 

In the following section, Tersoff and Hamann’s model for the STM (Tersoff and 
Hamann 1985) is briefly described. Analytic expressions for the asymptotic forms of the 
wave are given in section 3. In section 4 these wavefunctions are used to compute the 
tunnel currents in the STM. In section 5 ,  values are given for the corrugation amplitudes 
expected to be measured by the STM on a graphite surface. 

2. The Tersoff and Hamann model for the STM 

A number of models have been proposed for calculating the magnitude of the tunnel 
current in the STM. However, the most widely used and the simplest to apply is the 
Spherical tip model of Tersoff and Hamann (1983). They used Bardeen’s transfer 
Hamiltonian formalism (Bardeen 1961) to calculate the tunnelling current between the 
surface and the tip. The Bardeen matrix elements are given by the following expression: 

where Ytip and YSurfare wavefunctions of the STM tip and the surface respectively. Tersoff 
and Hamann applied this formalism in the low bias, low temperature limit to calculate 
the STM tunnel current. The tunnel current is given by 

I =  ( 8 n 2 e 2 V b i a s / h )  C IMtip ,sur f I  2 d ( E t i p  - EF) d ( ~ s u 6  - EF) (2) 
tip,surf 

where vb,,, is the voltage applied between the STM probe and the surface, and EF is the 
Fermi energy. 

In the Tersoff-Hamann model, the STM tip is modelled by a spherical square well 
and only tunnelling to the s state of the tip is included. This model gives the particularly 
simple result that the contribution to the tunnel current from a particular surface 
wavefunction, Ysurf, is proportional to the charge density generated by that wavefunction 
at the position of the centre of the spherical tip. The total tunnel current is determined 
by summing up the charge densities generated by all the surface wavefunctions that lie 
in an energy range e v b i a s .  In the case of the graphite surface at low bias, the surface 
wavefunctions have nodes at a hexagonal array of points on the surface. Using Tersoff 
and Hamann’s model Tersoff predicted that an STM image of a graphite surface would 
show giant corrugations because there would be no tunnel current to the STM tip at the 
points on the surface where the surface wavefunctions have nodes. However, it is obvious 
that tunnelling can occur to the px and the py components of the tip wavefunction when 
the probe is positioned over the nodes of the surface wavefunctions. The tunnel current to 
these states will reduce the magnitude of the corrugation amplitude from that predicted 
when only tunnelling to the s state of the tip is included. Tersoff and Hamann (1985) and 
Lang (1985) have claimed that tunnelling to the px and py states of the tip that have their 
nodes directed towards the surface is suppressed because the tunnelling distance is larger 
than it is for tip wavefunctions that are directed towards the surface. In the following 
sections, it will be shown that this claim is incorrect. 
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3. The wavefunctions of the STM tip 

In order to calculate the Bardeen matrix elements for tunnelling between the surface 
and the higher angular momentum components of the tip wavefunction, it is necessary 
to have analytical expressions for the wavefunctions of the tip. The exact nature of 
the STM tip is uncertain and therefore a model for the tip must be used. The model 
conventionally chosen is that of a spherical square well. When the centre of the sphere 
is positioned at the origin, the wavefunctions for the spherical square well can be written 
as 

where j l  and kl are spherical Bessel functions and modified spherical Bessel functions 
respectively; I is the orbital angular momentum quantum number; m is the azimuthal 
quantum number; Cl,m and C/,m are normalisation constants and k is equal to 
2 n m / h ,  where E is the energy of the state, K = 2n(2m~D)'/~/h, where CP is the 
work function, and R is the radius of the well. 

In the vacuum region the s wavefunction of the spherical square well can be written 
as 

v, = C, exp(-rclr - ro I)KR exp(KR)/Kjr - ro 1 ( 5 )  
where ro is the position of the centre of the well and C, is a normalisation constant. The 
asymptotic forms of the p wavefunctions of the spherical square well in the vacuum 
region are given by the following expression: 

vpi = Cpi exp( - ~ l r  - ro I )  I i - io I KR exp(KR)(1 - I / K /  r - ro I ) / K I  r - ro 1 ( 6 )  
where i = x ,  y ,  or z and C . is a normalisation constant. 

The surface wavefunctions of periodic surfaces are most conveniently expanded in 
terms of a basis set consisting of plane waves parallel to the surface. In order to simplify 
the calculation of the Bardeen matrix elements the tip wavefunctions will be expressed 
in terms of the same basis set. In terms of this basis set the s state of the spherical square 
well can be written as 

9' 

W, = C, dqexp[-(K* + q2) l l2 l z  - z o l ]  exp(iq- (x - x ~ ) ) K R  s 
x ~ x ~ ( K R ) / [ ~ ~ K ~ ( I  + q 2 / K 2  ) 1/2] (7) 

where q is a wavevector parallel to the surface, x is a two-dimensional vector parallel to 
the surface, the z direction is perpendicular to the surface and (xo, z o )  is the position of 
the centre of the spherical square well. 

The effects of higher angular momentum states on the tunnelling current have also 
been considered by Chung et a1 (1987) and Chen (1988). 

The analysis of Chung et a1 modelled the tip atom by a spherical square well, as 
opposed to expanding the tip wavefunction in terms of the spherical square well basis 
set. A more general approach where the spherical square well states are used as a basis 
set to describe the tip wavefunction is developed in this paper. A number of approaches 
to describe the tip wavefunction, including an approach which is similar to the one 
developed in this paper were discussed by Chen (1988). 
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In this paper the Tersoff-Hamann formalism is extended to include the contributions 
of tip states with non-zero magnetic quantum numbers to the tunnelling current. It is 
shown that these states make significant contributions to the tunnelling current and have 
to be taken into consideration when deriving the analytic form of the tip wavefunction. 
The basis set will be extended to incorporate the contributions of the tip p states. States 
of the spherical square well system with an orbital angular momentum number that is 
greater than one will not be considered in the present work, since the primary purpose 
of the work is to extend Tersoff and Hamann’s s wave model so that the magnitude of 
the tunnel current can be calculated at nodes of the surface wavefunction. The tunnelling 
at these points will be dominated by the px and py states of the tip and adding higher 
angular momentum components to the tip wavefunction will not substantially affect the 
results. When the p wavefunctions of the spherical square well can be expressed as 
derivatives of the s wavefunction. The analytic form of the p states of the spherical 
square well is given by the following expression 

Ypi = (-Cpj/Cs)(I/K) aY,/ai i = x ,  y ,  z .  (8) 
From (7) and (8) the p states of spherical square well can be expressed as 

Ypz = C,, 

Wpx = iCpxKRexp(KR) 

2 112 1 
dq- exp(-(K2 + q ) / z  - zo I )  exp(iq - (x - x, , ) )KR exp(KR) (9) 2nK 

dqexp(-(K2 + q2)1/21z  - zo l )  

2 112 (10) 

i 
x exp(iq * (x - xo >)SX/[2JcK2(1 + q 2 / K  1 1 

where qx is the x component of the wavevector q.  The wavefunction Ypy can be obtained 
from (10) by replacing x by y .  

The ratio of the normalisation constants for the s and p states, C,: C,,, will be taken 
to be 1 : g 3  so that the integrals over the vacuum region of the squared amplitudes of 
the states are approximately equal. 

Each electron that propogates to the end of the STM tip generates a wavefunction in 
the vacuum which may be expressed in terms of a basis set consisting of the states of the 
spherical square well. When the wavefunction generated by an electron in the vacuum 
region is expressed in terms of the s and p states of the spherical square well, the STM 
tip wavefunction can be written as 

v u , t i p  = ( m u v s  + P u v p x  + ~ , v p y  + 6 u v p z )  (11) 

where Y labels the electron. 
The local densities of states of the s,  px, py and pz tip states at the Fermi energy are 

determined by the average values of I av I ’, I p,, I 2, 1 y, I and 16, I ’. If the average values 
of these quantities are equal then the local densities of states of the s, px, py, and pz states 
of the tip will be approximately equal. For the majority of the discussion in the following 
section the average values of I a,, I I p,, I ’, I y,  I and I 6, I will be taken to be equal to 1. 
For convenience, these average quantities will be written as a2, p2, y2and a2respectively. 
The effects of varying the relative values of these quantities will be shown in tables in 
the following sections. The tunnelling matrix elements for the s and p states of the tip 
are given by 

Ms,surf = (~h2 /4Jd2m)%Jr f ( xo ,  Zo)C,  exP(KR)KR 

Mpi,sud = - Cpi e ~ ~ ( ~ R ) ~ R ( ~ l ~ ) ( r l i h ’ / 4 n ~ )  avsu,(x, z)lail x=xo,z=zo 

(12) 

(13) 
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where i = x, y or z ,  A = ( K ~  + q2)lI2 for the pz tip state and qx and qr respectively for the 
px and py tip states, where q represents the surface Bloch vector corresponding to the 
surface state, and v i  = p ,  y or S .  

4. One-dimensional model 

The effects of including tunnelling to the p states of the tip from a graphite surface can 
be illustrated by considering the one-dimensional model used by Tersoff. For the present 
study, the important feature of the electronic states at the Fermi level of graphite is 
the presence of nodes in the wavefunction. With a suitable choice of origin, a one- 
dimensional wavefunction which has the same features as the wavefunctions at the Fermi 
level in graphite can be written as 

!IfIlsurf = exp(-KFz) sin(kFx) (14) 
where kF is the Fermi wavevector of graphite, 

K F  = ( k ;  + ~ 8 ) ~ ”  K~ = 2?~(2mO)”~/h ,  

where Q is the work function of graphite. 
Tersoff computed the conductance for this one-dimensional model of the graphite 

surface by considering only the tunnelling to the s state of the tip. The conductance in 
this case can be expressed as follows: 

(T = csin2(kFxO) exp(-2~,z,)  (15) 

where c is a constant of proportionality that relates the local density of surface states at 
the centre of the STM tip to the tunnel conductivity. According to (15) when the STM is 
in the constant tunnel current mode the variation of the vertical distance of the centre 
of the tip from the surface, zo ,  with respect to xo can be written as 

zo  = [-ln(ao/c) + In(sin2(kFxo))]/2KF (16) 

where uo is the value of the conductance used in the experiment. 
It can be seen that (16) predicts that the corrugation amplitude in the STM image will 

be infinite since zo becomes infinite when kFxo is an integer multiple of n. Tersoff argued 
that the finite size of the Fermi surface would reduce the magnitude of the corrugations 
to a finite but large value. In a one-dimensional model of the STM tip, only the s,  px and 
pz states of the tip should be retained. When the contributions to the tunnel current from 
the px and pz states of the tip are included, the sum of the squares of the tunnelling matrix 
elements for the one-dimensional model of the graphite surface can be expressed as 

IMtip,surf I = exp(-2KFZo)[(@2h4) sin2(kFXo)C: + (p2h4)(kF/K0)’ cos2(kFxo)C”, 

+ y2h4 Sin2(k~X~)(K~/Kg)2C2pz + C,Cp,(ybh4)(K~/Ko) COS2(k~Xo)] 

X exp( 2KR)( KR) 2/m2 16n4. (17) 

In principle there can be terms in this expression due to interference between the s and 
px channels, and the pz and px channels. However, when contributions to the tunnel 
current from all the incident electrons in a cylindrically symmetric tip are taken into 
account these interference terms cancel. 
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From (17) it can be seen that the relative amplitudes of the tunnelling conductivities 
for the px and the pz states relative to the s state are of the order 

Opx /as = (kF l K 0  I2  
Opr /us = (KF l K 0  12* 

(18) 
(19) 

The px state of the STM tip makes a contribution to the tunnel current that is of the 
same order of magnitude as the contribution from the s state of the tip. The contribution 
of the px (and the py for a two-dimensional surface) state of the STM tip to the tunnelling 
conductivity is usually ignored. This is clearly not justified in the case of the graphite 
surface. The tunnelling conductivity due to the px and py states of the tip has the same 
exponential dependence on the tipsurface distance as the conductivity due to the s and 
pz states. Hence the px and py states make contributions to the total tunnel current which 
are of the same order of magnitude as those of the s and pz states and so they have to be 
taken into consideration in a realistic model of the STM wave function. 

The STM image for the one-dimensional model of the graphite surface when tunnelling 
to the p states is included will now be considered. It will be assumed that the px tip state 
makes the same contribution to the local density of states of the tip as the pz and the s 
states and hence that a' = p2 = d2 = 1. The corrugation function can be written as 
zo {-ln(ao/c)+ 1n[2 sin2(kFxo) + ( K ~ / K O )  sin2(kFxo) + ( k ~ / K o ) ~ ] } k ~ .  (20) 

ThevaluesofKo,kFandKFforgraphiteare 1.1 A-1, 1.7 A-'and2.0 A-'respectively. 
Substituting these values into (20) gives a corrugation amplitude of 0.23 8, independent 
of the value of uo or, equivalently, independent of the average tipsurface distance. The 
STM images for the one-dimensional model of the graphite surface are shown in figure 2. 
Figure 2(a) shows the image when only the s state of the tip is included and figure 2(b) 
shows the image when the contributions of the s tip state and the p tip states are taken 
into consideration. The giant corrugations predicted by the s wave only model are 
completely removed when a more realistic model for the wavefunctions of the STM tip is 
used. 

It is usually assumed that the wavefunctions of an STM tip will be predominantly 
directed in the forward direction. A basis set consisting of s, px and pz states for the 
evanescent wavefunctions outside the STM is over-complete. The evanescent 
wavefunctions are only physically meaningful outside the tip in the vacuum region and 
as the vacuum region does not extend over a solid angle of 432 the s and pz basis states 
are not orthogonal. Hence the choice of a2 = p2 = d2  = 1 in the previous example gives 
a tip wavefunction that is directed towards the surface which may well be an accurate 
representation of the wavefunctions of a real STM tip. However it is possible that the s 
and pz densities of states of an STM tip may be higher than the px and py densities of state. 
The effects of changing the local densities of states of the various angular momentum 
components of the tip wavefunction in the one-simensional model of the graphite surface 
can be seen in table 1. As expected, the magnitude of the corrugations in the STM image 
of the surface increases as the s and pz densities of states increase with respect to the px 
density of states. However, the magnitude of the corrugations increases relatively slowly 
with the ratio of the s and pz densities of states to the px density of states. 

5. Corrugation amplitude for graphite 

The surface layer of graphite has a hexagonal unit cell with a basis of two atoms per 
lattice point. The usual terminology is to label the atom which is directly over an atom 
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l o  i 

- 5  
Figure 2. Scanning tunnelling microscope images for the one-dimensional model of the 
surface of graphite. (a) Image obtained when tunnelling only to the s wavefunction of the 
tip is included. The corrugation amplitude is infinite; the finite corrugation shown in the 
figure is due to the plotter. (b) Image is obtained when tunnelling to the s, pz and pT 
wavefunctions of the tip is included. 

Table 1. The magnitude of the corrugations in the scanning tunnelling microscope image of 
a one-dimensional model of the graphite surface as a function of the ratio of the s and pz 
densities of states of the tip to the px density of states. 

The ratio of the density of 
tip p2 and s states to the 
density of tip px states 

The corrugation amplitude 
for the two-plane-wave 
model 

1 .oo 
2.00 

10.00 
100.00 
500.00 
1ooo.00 

0.23 
0.40 
0.81 
1.38 
1.77 
1.94 

in the second graphite layer as the a-atom and the other atom as the p-atom. The 
reciprocal lattice of graphite is hexagonal and the Fermi surface is a point at the corner 
of the Brillouin zone. The six plane waves represented by the points at the corners of 
the first Brillouin zone can be divided into two sets of three plane waves such that the 
three plane waves in each set are separated by reciprocal lattice vectors but there is no 
interaction between the two sets of plane waves (see figure 3). The wavefunctions at the 
Fermi level of graphite are, to a good approximation, combinations of these two sets of 
plane waves. The other plane waves that contribute to the wavefunctions at the Fermi 
level have much larger wavevectors parallel to the surface which decay much more 
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Figure 3. The Brillouin zone of the graphite 
surface. The Fermi level lies at point P. The num- 
bers indicate the two sets of plane waves that 

2 

1 2 describe the wavefunctions at the Fermi level. 

rapidly into the vacuum. Hence these plane waves make a negligible contribution to the 
wavefunctions at distances that are relevant in the STM and only the three plane waves 
with the smallest wavevectors parallel to the surface need to be considered. One com- 
bination of each of the sets of three plane waves is non-zero on the a-atoms and has 
nodes on the p-atoms and in the middle of the graphite hexagons. The other combination 
of the plane waves is non-zero on the p-atoms and has nodes on the a-atoms and in the 
middle of the graphite hexagons. Tomanek et a1 (1987) have shown that the STM image 
of graphite at low voltages is sensitive only to the wavefunctions which are non-zero on 
the p-atoms. This is a result of the energy broadening of the electronic states on the a- 
atoms induced by the overlap of the wavefunctions onto the second layer atoms. Only 
when the applied voltage exceeds the energy broadening of the a-atom wavefunctions 
do the wavefunctions on the a- and p-atoms contribute to the STM image with equal 
weight. Therefore for applied voltages that are smaller than ~ 0 . 1  volts only the p-atoms 
appear in the STM image. At higher voltages both sets of wavefunctions contribute to the 
STM image and both a- and p-atoms appear in the image. 

If it is assumed that an a-atom lies at the origin, the wavefunction that is non-zero 
on the a-atom is 

A[exp(ikFx) + exp(ikF(x - V3y)/2) + exp(ikF(x + V3y)/2)1 exp(-aFz) (21) 
where A is a normalisation constant and the x axis connects the a-atom at the origin to 
a neighbouring a-atom. The complex conjugate of (21) gives the a-atom wavefunction 
which is formed from the other set of three plane waves. 

The wavefunction that is non-zero on the p-atoms is 

Y~ = A[exp(ikFx) + exp(ikF(x - ~ 3 y ) / 2 )  exp(i2~/3) 

+ exp(ikF(x + ~‘3y)/2) exp(-i2~/3)] exp(-KFz). (22) 
The complex conjugate of (22) gives the p-atom wavefunction which is formed from 

the other set of three plane waves. 
The matrix elements for tunnelling to the s and p states of the STM tip can be easily 

calculated from the results presented in the previous section and the tunnel current 
calculated as a function of the position of the probe. Rather than present a lengthy 
expression for the magnitude of the tunnel current results will be given for the magnitude 
of the corrugations expected in an STM image of graphite under a variety of experimental 
conditions. These results are presented in table 2. The first column in table 2 gives the 
magnitude of the corrugation expected at low voltages when only the wavefunctions 
which are non-zero on the @-atoms contribute to the image. In this case the tip will be 
furthest from the surface when it is positioned above a @-atom and closest to the surface 
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Table 2. The magnitude of the corrugations in the scanning tunnelling microscope image 
of graphite as a function of the ratio of the s and pz densities of states, and of the tip to 
the px and py densities of states. 

The a- and j3- 
The j3-lattice only lattice corrugation The ratio of D(s, pz) 
corrugation amplitude amplitude to WPX, P,) 

0.47 
0.64 
1.03 
1.60 
2.00 
2.17 

0.23 
0.41 
0.80 
1.37 
1.77 
1.94 

1.00 
2.00 

10.00 
100.00 
500.00 

1OOO.00 

when it is either positioned above an a-atom or positioned over the centre of one of the 
hexagons of atoms. The second column gives the corrugation amplitudes expected at 
large voltages when the wavefunctions on both a- and p-atoms contribute to the image. 
In this case the tip will be furthest from the surface when it is positioned above either an 
a-atom or a p-atom and closest to the surface when it is positioned over the centre of the 
hexagons. It should be noted that the corrugation amplitude decreases with increasing 
voltage. 

The effect of changing the local densities of states of the s and pz states of the tip 
relative to the px and py states is shown by the values within each column in table 2. As 
expected, a larger weight in the s and pz channels relative to the px and py channels 
increases the corrugation amplitude. However, it can be seen that an unrealistically 
large ratio of the local densities of states of the s and pz tip states relative to the px and 
py tip states is required to generate a tunnelling image with a corrugation amplitude of 
as much as 2 A. These results show that giant corrugations observed in STM images of 
graphite cannot be explained by a simple tunnelling model. Hence Tersoff's suggestion 
that giant corrugations can be present in the STM image of an undistorted graphite surface 
cannot be correct. It must be concluded that the giant corrugations observed in STM 
images of the graphite surface can only be due to contact between the tip and the surface 
or to large elastic deformations induced in the surface by the proximity of the STM tip 
(Soler et a1 1986). 

6. Summary 

It has been shown that tunnelling to the px and p,, states of the STM tip can make significant 
contributions to the tunnelling conductivity. It has been shown that when a realistic 
model is used for the wavefunctions of the STM tip the corrugation amplitude expected 
in an STM image of the graphite surface will be small. 
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